home *** CD-ROM | disk | FTP | other *** search
-
-
-
- CCCCGGGGEEEESSSSDDDDDDDD((((3333SSSS)))) CCCCGGGGEEEESSSSDDDDDDDD((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- CGESDD - compute the singular value decomposition (SVD) of a complex M-
- by-N matrix A, optionally computing the left and/or right singular
- vectors, by using divide-and-conquer method
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK,
- RWORK, IWORK, INFO )
-
- CHARACTER JOBZ
-
- INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
-
- INTEGER IWORK( * )
-
- REAL RWORK( * ), S( * )
-
- COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- CGESDD computes the singular value decomposition (SVD) of a complex M-
- by-N matrix A, optionally computing the left and/or right singular
- vectors, by using divide-and-conquer method. The SVD is written
- A = U * SIGMA * conjugate-transpose(V)
-
- where SIGMA is an M-by-N matrix which is zero except for its min(m,n)
- diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N
- unitary matrix. The diagonal elements of SIGMA are the singular values
- of A; they are real and non-negative, and are returned in descending
- order. The first min(m,n) columns of U and V are the left and right
- singular vectors of A.
-
- Note that the routine returns VT = V**H, not V.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits which
- subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could
- conceivably fail on hexadecimal or decimal machines without guard digits,
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- CCCCGGGGEEEESSSSDDDDDDDD((((3333SSSS)))) CCCCGGGGEEEESSSSDDDDDDDD((((3333SSSS))))
-
-
-
- but we know of none.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBZ (input) CHARACTER*1
- Specifies options for computing all or part of the matrix U:
- = 'A': all M columns of U and all N rows of V**H are returned in
- the arrays U and VT; = 'S': the first min(M,N) columns of U and
- the first min(M,N) rows of V**H are returned in the arrays U and
- VT; = 'O': If M >= N, the first N columns of U are overwritten
- on the array A and all rows of V**H are returned in the array VT;
- otherwise, all columns of U are returned in the array U and the
- first M rows of V**H are overwritten in the array VT; = 'N': no
- columns of U or rows of V**H are computed.
-
- M (input) INTEGER
- The number of rows of the input matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the input matrix A. N >= 0.
-
- A (input/output) COMPLEX array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, if JOBZ = 'O', A is
- overwritten with the first N columns of U (the left singular
- vectors, stored columnwise) if M >= N; A is overwritten with the
- first M rows of V**H (the right singular vectors, stored rowwise)
- otherwise. if JOBZ .ne. 'O', the contents of A are destroyed.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- S (output) REAL array, dimension (min(M,N))
- The singular values of A, sorted so that S(i) >= S(i+1).
-
- U (output) COMPLEX array, dimension (LDU,UCOL)
- UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; UCOL = min(M,N)
- if JOBZ = 'S'. If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains
- the M-by-M unitary matrix U; if JOBZ = 'S', U contains the first
- min(M,N) columns of U (the left singular vectors, stored
- columnwise); if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not
- referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= 1; if JOBZ = 'S' or
- 'A' or JOBZ = 'O' and M < N, LDU >= M.
-
- VT (output) COMPLEX array, dimension (LDVT,N)
- If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the N-by-N
- unitary matrix V**H; if JOBZ = 'S', VT contains the first
- min(M,N) rows of V**H (the right singular vectors, stored
- rowwise); if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not
- referenced.
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- CCCCGGGGEEEESSSSDDDDDDDD((((3333SSSS)))) CCCCGGGGEEEESSSSDDDDDDDD((((3333SSSS))))
-
-
-
- LDVT (input) INTEGER
- The leading dimension of the array VT. LDVT >= 1; if JOBZ = 'A'
- or JOBZ = 'O' and M >= N, LDVT >= N; if JOBZ = 'S', LDVT >=
- min(M,N).
-
- WORK (workspace/output) COMPLEX array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= 1. if JOBZ = 'N',
- LWORK >= 2*min(M,N)+max(M,N). if JOBZ = 'O', LWORK >=
- 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). if JOBZ = 'S' or 'A',
- LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N). For good
- performance, LWORK should generally be larger. If LWORK < 0 but
- other input arguments are legal, WORK(1) returns the optimal
- LWORK.
-
- RWORK (workspace) REAL array, dimension (LRWORK)
- If JOBZ = 'N', LRWORK >= 7*min(M,N). Otherwise, LRWORK >=
- 5*min(M,N)*min(M,N) + 5*min(M,N)
-
- IWORK (workspace) INTEGER array, dimension (8*min(M,N))
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The updating process of SBDSDC did not converge.
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-